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In this paper, we review the recent advances which have taken place in the under-
standing and applications of acoustic/elastic metamaterials. Metamaterials are artifi-
cially created composite materials which exhibit unusual properties that are not found
in nature. We begin with presenting arguments from discrete systems which support
the case for the existence of unusual material properties such as tensorial and/or
negative density. The arguments are then extended to elastic continuums through
coherent averaging principles. The resulting coupled and nonlocal homogenized rela-
tions, called the Willis relations, are presented as the natural description of inhomo-
geneous elastodynamics. They are specialized to Bloch waves propagating in periodic
composites and we show that the Willis properties display the unusual behavior which
is often required in metamaterial applications such as the Veselago lens. We finally
present the recent advances in the area of transformation elastodynamics, charting its
inspirations from transformation optics, clarifying its particular challenges, and identi-
fying its connection with the constitutive relations of the Willis and the Cosserat types.
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1. Introduction

Metamaterials are artificially designed composite materials which can exhibit properties
that cannot be found in nature. These properties can be electronic, magnetic, acoustic, or
elastic and have, of late, come to include static [1] properties. In the context of acoustic
metamaterials, these properties refer to the bulk modulus and density, and for elastic
metamaterials, they refer to the moduli (bulk, shear, and anisotropic) and density of a
designed composite material. As such, they are used for the fine-tuned, predominantly
frequency-dependent control of the trajectory and dissipation characteristics of acoustic
and stress waves. These materials have found natural applications in the research areas of
cloaking, imaging, and noise and vibration control. The primary driver in acoustic
metamaterials research has been research in the area of photonic metamaterials. As
such, many of the conclusions drawn from the photonics research directly apply to
acoustic waves and acoustic metamaterials due to the essential similarity of the governing
equations in the two cases. Realizing analogous results for elastic metamaterials is
complicated by the fact that the governing equation for elasticity admits both longitudinal
and shear wave solutions which are capable of exchanging energy between each other.
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However, even in the case of elastic metamaterials some general ideas have been
borrowed from photonic metamaterials research.

There are two broad directions from which the research area of metamaterials can be
approached. The first direction seeks to find the uses and applications of those materials
which exhibit unnatural material properties such as negative density and moduli (negative �
and μ in the case of electromagnetism). In this approach, the question of the existence of
such a material is secondary and the applications themselves are of primary importance.
Within this approach, researchers have conjectured that materials with simultaneously
negative material properties will exhibit such exotic phenomena as negative refraction,
reversed Doppler effect, and reversed Cherenkov radiation [2]. Such materials have been
termed left-handed materials (LHMs) and are characterized by the quality that a wave of
appropriate frequency traveling through such a material will display anti-parallel phase and
group-velocity directions (Figure 1). There are other scenarios, however, which allow for
the existence of anti-parallel waves such as guided waves [3] and negative group-velocity
bands in photonic and phononic crystals (see also [4–6]). There exists the possibility of
achieving negative refraction in such media [7,8]. In fact, it has been shown recently that
negative energy refraction can be accompanied by positive phase-velocity refraction, and
conversely that positive energy refraction can be accompanied by negative phase- velocity
refraction [9]. LHMs, on the other hand, can be uniquely attributed a negative index of
refraction through arguments of causality [10]. This unique characteristic makes them
suitable for applications in creating flat lenses which can beat the diffraction limit in
imaging applications [11]. If, in addition to LHMs, one could find materials with any
desired material property then it becomes theoretically possible to design perfect cloaks
which render an object enclosed within it completely invisible. The actual design of the
cloak is approached through clever coordinate transformations which preserve the form of
the governing equation making it possible to identify the desired change of wave trajectories
with transformed material properties. This approach to designing cloaks has been applied to
electromagnetic waves [12–16], acoustic waves [17], and elastic waves [18,19].

The second broad direction in metamaterials research seeks to find those material
microstructures which will display the unusual properties required for the application
areas discussed earlier. No naturally occurring homogeneous material displays LHM
properties of negative density and stiffness [20]. Furthermore, naturally occurring materials
offer only a very limited spectrum of density and moduli which is not enough to realize

Figure 1. LHMs and negative refraction, a. LHMs are characterized by anti-parallel phase and
group-velocity directions, b. refraction at an interface between two normal materials, c. refraction at
an interface between a normal material and an LHM.
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cloaking and other trajectory control applications. In order to achieve the properties required
in the applications discussed earlier, researchers have sought to design heterogeneous
materials at appropriate length scales which exhibit desirable effective properties [21].

Figure 2 shows three broad regions in which wave phenomena can be studied. In the
low-frequency region, the predominant wavelength, λ, is much larger than the micro-
structural length scale of the material in which it is traveling. In this region, wave
characteristics are nondispersive and propagation is controlled by the static averages of
material properties. The traditional area of static homogenization is appropriate for
determining density, ρðxÞ, and stiffness tensor, C(x), which control wave behavior in
this regime [22]. At the other end of the scale, the wavelength of the wave is on the same
scale as or shorter than the length scale of the microstructure. Wave behavior in this
regime is dominated by scattering at material interfaces and the heterogeneous material
cannot be effectively defined by average homogenized properties. This is the case when
one considers the optical branches in phononics or photonics [23]. Between these two
scales lies a regime where the heterogeneous material may still be defined by homo-
genized effective properties but those properties must take into consideration the disper-
sive nature of wave propagation. This effectively means that in this regime the
homogenized material properties which control wave propagation will need to be fre-
quency-dependent and, therefore, static homogenization techniques are not sufficient
anymore. The primary problem, therefore, is one of relating the microstructure of a
composite to the frequency-dependent effective properties which will adequately represent
wave phenomena in it and which are useful to the applications discussed above.

2. Emergence of negative and tensorial material properties

Metamaterial applications naturally require frequency dependence and additional tensorial
complexity (e.g. tensorial density) of material properties. The concept of dispersive
(frequency-dependent) material properties naturally arises when laws of motion are
enforced at scales below which additional heterogeneity, capable of dynamics, exist.
Furthermore, this process of homogenization can give rise to tensorial forms of those
material properties which are traditionally taken as scalar, such as density. Consider, for

Figure 2. Homogenizable region.
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instance, the dynamics of the one-dimensional composite system shown in Figure 3a
[24,25]. If we relate the harmonic macroscale force to the harmonic macroscale accelera-
tion, we find:

F̂ ¼ �ω2M eff Û ; M eff ðωÞ ¼ M þ mω2
0

ω2
0 � ω2

; ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2k=m

p
(1)

showing that by insisting on the applicability of Newton’s second law at the macroscale,
we inevitably end up with a frequency-dependent effective mass. The appearance of mass
dispersion directly results from the act of subsuming the microstructural dynamic effects
into a homogenized macroscale description. M eff increases to infinity as ω approaches ω0

(resonance condition) and becomes negative beyond that. By extending the idea to two
and three dimensions and by incorporating springs of different moduli, it is clear that the
effective mass can not only be made frequency-dependent but also anisotropic in nature.
In two dimensions (Figure 3b), the relevant equations become:

F̂i ¼ �ω2M eff
ij Ûj; Mij

eff ðωÞ ¼ M þ
mω2

j½ �
ω2

j½ � � ω2

" #
δij; ω j½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2kj=m

q
; i; j ¼ 1; 2 (2)

where δij is the delta function. In the above, the off-diagonal terms of M eff are zero. They
can be made nonzero, thereby coupling the displacements, Uj, by incorporating the
springs along axes which are not oriented along the axes of the orthogonal coordinate
system [24] (Figure 3c).

The assumption of harmonicity may seem restrictive in the above examples. In
general, the time-dependent macroscale displacement vector, U(t), would be related to
the time-dependent macroscale force vector, F(t), via a kernel, H(t), through the convolu-
tion operator, F ¼ H � U. However, it was shown by Milton et al. [24] that the models of
Figure 3 are sufficiently rich to approximate the kernel under fairly unrestrictive condi-
tions. By periodically repeating the microstructure shrinking the unit cell size to zero
while appropriately scaling the relevant quantities, one can obtain the justification for the
existence of a frequency-dependent mass density tensor ρðωÞ. Analogously to the fre-
quency-dependent mass of Equation (1), the frequency-dependent density is expected to
be negative in some frequency range, the exact range depending upon the resonant
behavior of the microstructure. If the same composite can also be made to exhibit negative

Figure 3. Frequency-dependent effective mass, a. one dimension, b and c. tensorial frequency-
dependent effective mass.
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modulus in the frequency range where its density is negative, then it would serve as an
acoustic/elastic LHM with applicability to the metamaterial applications discussed above.

It must be mentioned that in the examples of Figure 3, mass can only become negative
in a homogenized effective sense and that a resonance is essential for achieving the
negative behavior. However, effective mass can be tensorial and anisotropic in nature even
away from the resonance (Equation 2). This requirement of resonance being important for
achieving negative effective properties is seen in photonic metamaterials. A photonic
LHM requires simultaneously negative dielectric permittivity (�) and magnetic perme-
ability (μ). Plasmon resonances in metals give rise to a frequency-dependent dielectric
permittivity which has a similar functional form as Equation (1). Below the plasmon
frequency � is negative, however, at very low frequencies the effect of the plasmon is
destroyed by dissipation. Pendry et al. [26] showed that the plasmon frequencies can be
reduced by introducing artificial resonances through a periodic assembly of thin metallic
wires. It was further shown [27] that a periodic array of nonmagnetic, resonant conducting
units displays an effective μ which assumes negative values above the resonance. By
combining the above, Smith et al. [21] proposed a periodic array of interspaced conduct-
ing nonmagnetic split ring resonators and continuous wires which exhibited a frequency
region where both �eff and μeff were simultaneously negative.

The general ideas from photonic metamaterials research have inspired researchers to
propose composite designs which use local mechanical resonances to exhibit negative
effective density and moduli. In some cases, researchers have even proposed negative
designs which do not use resonances. The proposed designs began with Liu et al.
suggesting a design based on silicone-coated lead spheres embedded in epoxy matrix
[28,29]. It was subsequently suggested that acoustic/elastic LHMs could be constructed by
mixing two structures that independently exhibit negative density and modulus [30].
Negative modulus could be achieved through a periodic array of Helmholtz resonators
[31,32], and the negative density could be achieved through an array of thin membranes
[33]. The combination of these two structures was shown to exhibit LHM properties
[34,35] Since then, researchers have proposed more complicated acoustic/elastic LHM
architectures. These include multiply resonant microstructures that lead to density and
some components of the modulus tensor simultaneously becoming negative [36], periodic
array of curled perforations [37,38], tunable piezoelectric resonator arrays [39], anisotro-
pic LHMs by arranging layers of perforated plates [40], etc. It is clear that the materials
which would satisfy the requirements for LHM properties will need to be dispersive since
there does not exist any material with quasistatic LHM properties. This consequence
places rather strong constraints on the broadband applicability of metamaterials to appli-
cations such as perfect cloaking and superlensing. Additionally, since LHM properties
result from internal resonances, they are inevitably accompanied with large dissipation,
thereby, limiting their use in practical applications. Some proposals have been made
to compensate for the losses through active gain [41]. However, there exist
compelling theoretical arguments from causality, which limit the potential benefit of
such methods [42].

3. Dynamic homogenization

The theoretical support to the field of metamaterials is provided through dynamic homo-
genization techniques that relate the microstructure of a composite to its frequency-
dependent dynamic effective properties. These effective properties must adequately
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represent the wave behavior in the composite within desired frequency ranges. The
majority of research interest in the area of metamaterials is restricted to periodic compo-
sites, which display highly dispersive wave behavior [43–48]. These periodic composites
admit Bloch waves as solutions and many different numerical algorithms have been
developed for calculating the dispersive properties of these waves. These include the
popular plane wave expansion method [49], the finite difference time domain method
[50], the multiple scattering method [51], variational methods [52,53], secondary expan-
sions [54], etc.

3.1. Averaging techniques

There exist different ways by which effective constitutive parameters for wave propaga-
tion in metamaterials may be defined. The most common route to determining these
parameters is by the use of retrieval methods [55–58], where the assumption is that local
effective properties may be used to define periodic composites such as metamaterials.
These properties are determined by analyzing the complex reflection and transmission
coefficients of a finite slab of the composite. The retrieval method, which began with
electromagnetic metamaterials, was subsequently extended to acoustic metamterials [59].
However, the retrieval method, while simple in principle, produces effective parameters
which fail to satisfy basic passivity and causality properties [60] and exhibits other anti-
resonant artifacts [61–63]. An excellent review [64] points out that the majority of
metamaterial homogenization studies published in the last decade failed to respect basic
causality and passivity properties and in some cases also violated the second law of
thermodynamics. Another broad technique for determining effective properties is through
the Coherent Potential Approximation method [65] and its enhancements [66,67]. The
metamaterial under study is embedded in a matrix, which has the properties of the
effective media. These properties are then determined by minimizing wave scattering in
the surrounding matrix and as such only apply in the long wavelength limit. Recent efforts
which employ a similar idea of matching the surface responses of the structural unit of a
metamaterial with a homogenized medium show applicability beyond the long wave-
length limit [68]. The focus here is on the dynamic homogenization techniques which are
geared toward extracting the effective dynamic properties of periodic acoustic/elastic
composites which are applicable in the long wavelength limit and beyond. These proper-
ties are expected to represent Bloch wave propagation in such periodic composites and, as
such, can be termed Bloch wave homogenization techniques. It must be noted that they
are different from asymptotic homogenization [69–71] techniques which have tradition-
ally been used for the calculation of the Bloch wave band structure. Asymptotic homo-
genization was also limited in application to describing only the behavior of the
fundamental Bloch mode at low frequencies [72,73]. Recently, however, it has been
extended to higher frequencies and higher Bloch modes [74–77] (see also [78]).
Additionally, there have been other efforts to bridge the scales for the study of dispersive
systems based upon variational formulations [79], micromechanical techniques [80],
Fourier transform of the elastodynamic equations [81], and strain projection methods [82].

3.2. Ensemble averaging

The pioneering work in the area of homogenization of inhomogeneous electromagnetics/
elastodynamics was done by Willis [83–86]. Here, we present the basic ideas that have led
to the current state of the art in the area of dynamic homogenization. We consider a

6 A. Srivastava

D
ow

nl
oa

de
d 

by
 [

20
8.

54
.8

0.
15

3]
 a

t 1
0:

21
 2

7 
M

ar
ch

 2
01

5 



volume Ω in which the equations of motion and kinematic relations are given point-
wise by:

σij; j þ fi ¼ _pi; εij ¼ 1

2
ðui; j þ uj;iÞ; (3)

where σ; f ; ε; p, and u are the space and time-dependent stress tensor, body force vector,
strain tensor, momentum vector, and displacement vector, respectively. The pointwise
constitutive relations are:

σij ¼ Cijkl εkl; pi ¼ ρ _ui; (4)

with the usual symmetries for C. Equations (3 and 4) are supplemented with appropriate
boundary conditions on @Ω and initial conditions at t ¼ 0. We seek to average the
equations of motion and find the constitutive parameters that relate the averaged field
variables hσi, hεi, hpi, and h _ui. The homogenization procedure can be derived for random
composites and subsequently specialized to the periodic case [87]. Random composites
represent families whose physical properties vary not only with position x but also with a
parameter α. α is a member of a sample space, A, over which a probability measure P is
defined. In essence, we solve many problems over Ω where Ω is defined, for each
problem, by materials with properties Cðx; αÞ; ρðx; αÞ (Figure 4a). Each problem has the
same body force, initial conditions, and boundary conditions. This leads to the pointwise
solution uðx; αÞ (and other derived field variables) for each problem. Now ensemble
averages are defined over the sample space:

hϕiðxÞ ¼
ð
A
ϕðx; αÞPðdαÞ (5)

Ensemble averaging the equation of motion (Equation (3)) we get:

hσiij; j þ fi ¼ h _pii; hεiij ¼
1

2
ðhuii;j þ huij;iÞ (6)

Figure 4. Ensemble averaging: a. random composite, b. periodic composite.
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which could be solved if the ensemble averages of stress and momentum could be related
to the ensemble averages of strain and velocity through appropriate homogenized rela-
tions. It should be noted that such relations cannot be directly derived from averaging
Equation (4).

3.3. Homogenized properties

At this point, a comparison medium is introduced with homogeneous properties (C0; ρ0)
which transforms Equation (4) to:

σij ¼ C0
ijkl εkl þ �ij; pi ¼ ρ0 _ui þ Pi; (7)

where S;P are stress and momentum polarizations (see [88–91] for polarizations). The
above could be averaged and the required homogenized relation extracted if the ensemble
averages of S;P could be determined. Using Equation (7) in the equation of motion we
have:

ðC0
ijkl uk;lÞ; j þ fi þ �ij; j � _Pi ¼ ρ0€ui (8)

Taking into consideration the initial and boundary conditions, the solution to Equation (8)
can be written as

uiðx; tÞ ¼ u0i ðx; tÞ þ
ð
t

ð
Ω
G0

ijðx; t; x0; t0Þ �jk;kðx0; t0Þ � _Pjðx0; t0Þ
� �

dx0dt0 (9)

where u0 is the solution to

ðC0
ijkl uk;lÞ; j þ fi ¼ ρ0€ui (10)

with the same boundary conditions as in (Equation (8)) and G0 is the Green’s function of
the comparison medium satisfying:

C0
jikl G

0
kp; jl þ δipδðx� x0Þ δðt � t0Þ ¼ ρ0δik €G

0
kp (11)

with appropriate homogeneous boundary conditions on @Ω. Integration by parts of
(Equation (9)) formally gives:

u ¼ u0 � S0 � S�M0 � P (12)

where � represents convolution in space and time as shown in Equation (9). After
appropriate space and time differentials we have:

ε ¼ ε0 � S0x � S�M0
x � P

_u ¼ _u0 � S0t � S�M0
t � P (13)

where S0x ;M
0
x ; S

0
t ;M

0
t are integral operators [87]. The above can be used to express S;P in

terms of hεi; h _ui after eliminating C0; _u0 (see [24] for details). This relation is formally given:

8 A. Srivastava

D
ow

nl
oa

de
d 

by
 [

20
8.

54
.8

0.
15

3]
 a

t 1
0:

21
 2

7 
M

ar
ch

 2
01

5 



S ¼ T11 � hεi þ T12 � h _ui

P ¼ T21 � hεi þ T22 � h _ui (14)

It is clear from the above that the ensemble averages of S;P depend on both hεi and
h _ui. In conjunction with the ensemble average of Equation (7), it means that hσi and hpi
will depend upon both hεi and h _ui. The coupled homogenized constitutive relations which
naturally emerge from ensemble averaging are formally given as

hσi ¼ Ceff � hεi þ Seff � h _ui

hpi ¼ �S
eff � hεi þ ρeff � h _ui (15)

A material which exhibits the above coupled constitutive relation, which is a general-
ization of the classical elastic constitutive relation, will be termed a Willis material. It is
interesting to note from Norris et al. [92] that a periodic composite formed using Willis
materials, under the dynamic homogenization process shown in this section, results in an
effective dynamic constitutive relation, which is again of the Willis kind. This shows that
the Willis constitutive relation given above is closed under homogenization whereas the
classical constitutive relation is not.

3.4. Specialization to Bloch/Floquet waves in periodic composites

It should be noted that the averaged fields in Equation (15) depend upon x; t and that the
constitutive properties appearing in (Equation (15)) are integral operators in both space
and time domains. These operators are considerably simplified when applied to the case of
Bloch waves in periodic composites. Ensemble averages can be specialized to the periodic
case. In Figure 4b, the unit cell denoted by index 0, Ω, is characterized by base vectors hi.
The reciprocal base vectors of the unit cell are given by

q1 ¼ 2π
h2 � h3

h1 � ðh2 � h3Þ ; q2 ¼ 2π
h3 � h1

h2 � ðh3 � h1Þ ; q3 ¼ 2π
h1 � h2

h3 � ðh1 � h2Þ (16)

such that qi � hj ¼ 2 π δij. The rest of the composite can be generated by repeating Ω such
that the material properties have the following periodicity:

Cjkmnðxþ nih
iÞ ¼ CjkmnðxÞ; ρðxþ nih

iÞ ¼ ρðxÞ; (17)

where ni are integers. The infinite periodic composite, thus generated, accepts Bloch
waves as solutions with a wave vector specified by k ¼ Qiqi. Any field variable Φðx; tÞ
(stress, strain, velocity, or momentum) can be expressed as Φ̂ðxÞ exp iðk � x� ωtÞ½ � where
Φ̂ is Ω periodic. Now consider another realization of the composite generated by repeat-

ing Ωð1Þ (Figure 4b). Ωð1Þ is chosen randomly but due to the periodicity of the composite it

is equivalent to some Ωð2Þ which is translated from Ω by a vector y such that y 2 Ω. This

realization also accepts Bloch wave solutions of the form Φ̂
yðxÞ exp iðk � x� ωtÞ½ � where

the superscript y denotes the translated unit cell and Φ̂
yðxÞ is again Ω periodic. As can be
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seen from Figure 4b any Ω periodic quantity Φ̂
yðxÞ is equivalent to Φ̂ðxþ yÞ. The

medium translated by y can be regarded as one of a statistical ensemble if y is assumed
to be uniformly distributed over Ω. Ensemble averaging of the field variables is, therefore,
equivalent to:

hΦiðxÞ ¼
ð
Ω
Φ̂

yðxÞ eiðk�x�ωtÞdy ¼
ð
Ω
Φ̂ðxþ yÞdy

� �
eiðk�x�ωtÞ ¼ hΦ̂i eiðk�x�ωtÞ (18)

which is the usual unit cell averaging carried over the Ω periodic parts of the field
variables and not the full field variables. It can be shown that when the averaging is
performed over the Ω periodic parts of the field variables then the resulting effective
properties automatically satisfy the dispersion relation of the periodic composite [93]. For
periodic composites, the homogenized effective constitutive relation (Equation (15)) can
be written in the tensorial form [94]:

hσ̂ii ¼ Ceff
ijklhε̂ikl þ Seffijk h _̂uik

hp̂ii ¼ �Seffijk hε̂ijk þ ρeffij h _̂uij (19)

where Ceff ; Seff ; �S
eff
; ρeff are functions of k;ω. Furthermore, the constitutive tensors

display the following additional symmetries:

Ceff
ijkl ¼ Ceff

jikl ¼ Ceff
ijlk ¼ ðCeff

klijÞ�

�Seffijk ¼ ðSeffjki Þ�

ρeffij ¼ ðρeffji Þ� (20)

where * represents a complex conjugate. The above relations hold generally for Bloch
waves in three-dimensional linear periodic composites and are in congruence with effec-
tive dynamic properties for electromagnetic Bloch/Floquet waves [95]. In one dimension
these relations simplify further [96]:

hσ̂i ¼ Ceff hε̂i þ Seff h _̂ui

hp̂i ¼ �S
eff hε̂i þ ρeff h _̂ui (21)

where it can be shown that Ceff and ρeff are real and �Seff ¼ ðSeff Þ�. Moreover, �Seff ; Seff !
0 as ω ! 0 whereas Ceff and ρeff approach their quasistatic homogenized limits as
ω ! 0. Explicit calculations of effective properties in three- and one-dimensional periodic
composites are provided in Refs [92,94,96].

3.5. Nonuniqueness of the homogenized relations and LHM properties

Equation (21) are homogenized effective dynamic constitutive relations of one kind for
Bloch wave propagation in one-dimensional periodic composites. It will be shown later
that this form of the constitutive relations may be important for acoustic/elastic cloaking
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applications. However, these relations are not unique and can be transformed into a form
which is more directly applicable to LHMs. The nonuniqueness of the effective relations
results directly from the fact that they involve integral operators in the space and time
domains of fields which are derived essentially from the same displacement field

(Equation (15)). It is possible to transform Ceff to Ceff þ Ĉ
eff

and Seff to Seff þ Ŝ
eff

with appropriate conditions on Ĉ
eff
; Ŝ

eff
such that the first equation of Equation (15) is

preserved. Similarly, the second equation of Equation (15) could be preserved under

appropriate transformations to �S
eff
; ρeff . These conditions are described in Ref. [97],

where it is also pointed out that the nonuniqueness disappears if one assumes the
existence of an inelastic strain in the body. For the electromagnetic case a similar result
was proven by Fietz and Shvets [98], where they showed that the analogous electro-
magnetic effective dynamic constitutive relation can be determined uniquely only in the
presence of a magnetic monopole current. In the absence of inelastic strain, there exists
considerable freedom in the definitions of the effective parameters (see [99] for instance).

As a consequence of the nonuniqueness of the effective dynamic constitutive relations,
Equation (21), in one dimension, can be transformed so as to subsume the effects of
Seff ; �Seff into a modified set of effective modulus and density parameters [93–100]:

hσ̂i ¼ �Ceff hε̂i; hp̂i ¼ �ρeff h _̂ui (22)

The modified parameters �Ceff ; �ρeff are functions of frequency and automatically satisfy the
dispersion relation of the composite:

ffiffiffiffiffiffiffiffi
�C
eff

�ρeff

s
¼ ω

k
(23)

where k is the one-dimensional wavenumber.
Figure 5 shows effective properties calculated for a three-phase composite where the

central phase (M3) is stiff and heavy and can resonate due to the light and compliant M2

phase. This unit cell is the one-dimensional equivalent of the locally resonant structure

Figure 5. Effective properties for an internally resonant one-dimensional unit cell, a. �Ceff , b. �ρeff .

International Journal of Smart and Nano Materials 11

D
ow

nl
oa

de
d 

by
 [

20
8.

54
.8

0.
15

3]
 a

t 1
0:

21
 2

7 
M

ar
ch

 2
01

5 



considered by Liu et al. [28]. The geometrical and material properties of the unit cell are
provided in Ref. [101]. These properties are calculated from Equation (22) over the first
two branches of the phononic band structure of the composite. It is clear that for this unit
cell both �Ceff and �ρeff are simultaneously negative in the frequency region denoted by the
yellow rectangle in Figure 5. This frequency region corresponds to the Veselago left-hand
metamaterial zone (see also [102]).

3.6. Applicability of the homogenized relations

It should be noted that Equation (15) is exact for a given elastodynamic problem on Ω if
the boundary conditions of the problem are appropriately represented in the associated
homogeneous problem (Equation (10)). However, this is often very complicated and the
effort is to represent finite composites with homogenized properties which correspond to
an infinite body. This is a valid approach in the homogenization limit [103] and is
equivalent to ascribing the Bloch homogenized properties presented in section (III D) to
the finite and or semi-infinite cases which appear in focusing, negative refraction, and
cloaking applications. Refs [99,104,105] have studied this approximation and concluded
that the approximation grows worse as frequency is increased. However, the approxima-
tion of homogenization for three-phase locally resonant unit cells is, in general, better than
it is for nonresonant unit cell. Willis [105] has further studied the applicability of a
modified form of the homogenized relations based upon weighted averages of the fields.

4. Coordinate transformations and metamaterials

In general, research in electromagnetic/acoustic/elastic wave cloaking has developed
independently of the research in metamaterials/dynamic homogenization but they have
converged to some common ideas and are intricately related now. Research in electro-
magnetic cloaking began with Pendry’s observation that Maxwell’s equations preserve
their form under coordinate transformations, albeit with modified �; μ [106–108].
Specifically, Maxwell’s equations at a fixed frequency, ω, are:

�� Eþ iωμH ¼ 0; ��H� iω �E ¼ 0

under the coordinate transformation x0 ¼ x0ðxÞ, they retain their form:

�0 � E0 þ iωμ0H0 ¼ 0; �0 �H0 � iω �0E0 ¼ 0

with the following transformed properties:

μ0ðx0Þ ¼ AμðxÞAT=detA; �0ðx0Þ ¼ A�ðxÞAT=detA

where Aij ¼ @x
0
i=@xj (and transformed fields). This observation was used to design a cloak

through coordinate transformations which mapped the trajectories of electromagnetic
waves in the presence of a cavity surrounded by a cloak to a homogeneous material
[15,16]. This ensured that the cavity would become invisible to light waves generated by
any source and incident at it from any direction. There has been considerable research
activity in the field since then (see [109] for a review).

Cummer and Schurig [110] showed that there exists complete isomorphism between
electromagnetic waves and acoustic waves in two dimensions. In cylindrical coordinates
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with z invariance and accounting for a tensorial but diagonal mass density, the acoustic
wave equations and constitutive relation are given by:

iωρϕvϕ ¼ � 1

r

@p

@ϕ
; iωρrvr ¼ � @p

@r

iωp ¼ � λ

r

@ðrvrÞ
@r

þ @vϕ
@ϕ

� �
(24)

where λ is the bulk modulus of the fluid, p is pressure, and v is vector fluid velocity. These
compare with z-invariant Maxwell’s equations in cylindrical coordinates for transverse-
electric polarization:

iωμrð�HrÞ ¼ � 1

r

@ ð�EzÞ
@ϕ

; iωμϕHϕ ¼ � @ ð�EzÞ
@r

iωð�EzÞ ¼ � 1

zr

@ðrHϕÞ
@r

þ @ð�HrÞ
@ϕ

� �
(25)

p; vr; vϕ; ρr; ρϕ; λ
�1

h i
Ð �Ez;Hϕ;�Hr; μϕ; μr; εz

h i
clarifies the duality between Equations

(24) and (25). Once the duality is established, designs for electromagnetic cloaks can be
easily transformed to designs for acoustic cloaks. In the three-dimensional case Chen and
Chan [111] noted that the acoustic wave equations retain their form but with transformed
material properties. Specifically, the acoustic wave equation at a fixed frequency, ω, is:

�
1

ρðxÞ�pðxÞ
� �

¼ � ω2

κðxÞ pðxÞ

where p is the fluid pressure and κ is the bulk modulus of the fluid. Under the coordinate
transformation x0 ¼ x0ðxÞ, the acoustic wave equation retains its form:

�0 1

ρ0ðxÞ�
0p0ðx0Þ

� �
¼ � ω2

κ0ðx0Þ p
0ðx0Þ

with the following transformed properties:

1

ρ0ðx0Þ ¼ A
1

ρðxÞA
T=detA; κ0ðx0Þ ¼ κðxÞ detA

Once the invariance of the acoustic equation was noted, ideas from electromagnetic cloak
design were brought to bear upon the design of acoustic cloaks. The anisotropic densities
needed to realize such cloaks could be achieved by using layered fluids [112,113] (see
also [114,115]), however, Norris [17] realized that such inertial cloaks suffer from a
considerable mass penalty. He presented an alternative route to designing cloaks for
acoustic waves based upon pentamode materials [17,116,117]. The existence of different
routes to acoustic wave cloaking has been noted in literature [118]. For both electro-
magnetic and acoustic cloaking cases, the problem boils down to finding the
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microstructures that would exhibit those effective properties which are required by an
appropriate coordinate transformation. An excellent review exists on the topic of trans-
formational acoustics and its application to the design of acoustic cloaks [119].

For elastodynamics, however, it was found [18] that the equations change form under
coordinate transformation and the cloaking ideas from electromagnetism and acoustics
cannot be directly applied to elastic waves in solids. Specifically, the elastodynamic wave
equations at a fixed frequency are given by

� � σ ¼ �ω2ρ u; σ ¼ C�u

which, under the coordinate transformation x0 ¼ x0ðxÞ, transform to:

�0 � σ0 ¼ D0�0u0 � ω2ρ0u0; σ0 ¼ C0�0u0 þ S0u0 (26)

The modified constitutive parameters are given by [18]

C
0
pqrs ¼

1

detA
ApiAqjCijklArkAsl; S

0
pqr ¼

1

detA
ApiAqjCijklBrkl

D
0
pqr ¼

1

detA
BpijCijklAqkArl; ρ

0
pq ¼

1

detA
ρApiAqi þ BpijCijklBqkl

� �
(27)

where Aij ¼ @x
0
i=@xj and Bijk ¼ @2x

0
i=@xj@xk . This lack of invariance has made it hard to

transfer the success of electromagnetic and acoustic cloaking to elastic wave cloaking.
Moreover, the additional tensors D0; S0 which appear in Equation (26) are highly unusual
as far as conventional materials are concerned. However, these parameters are not unusual
for a Willis material. In fact, Equation (15), under a fixed frequency is given by

hσi ¼ Ceff � hεi � iω Seff � hui

hpi ¼ �S
eff � hεi � iωρeff � hui (28)

where � refers to convolution in space. With the following kinematic and dynamic
relations:

hεi ¼ �hui þ ð�huÞiT
h i

; � � hσi ¼ �iω hpi (29)

Equation (28) transforms into the form of Equation (26). Moreover, it can be shown that
Equation (26), under the coordinate transformation x00 ¼ x00ðx0Þ, retains its form.
Therefore, it appears that if elastic materials can be defined by the Willis form then the
lessons learned from transformational optics and acoustics can be applied to elastic wave
cloaking. It must be mentioned here that Willis material is not the only way of achieving
elastic wave cloaking. Norris [19] showed that Cosserat type materials [120] would also
serve the purpose. Some other techniques which have been studied for elastic wave
cloaking include using anisotropy [121] and nonlinear prestressing [122–125].
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5. Conclusions

In this paper, we have approached the problem of acoustic/elastic metamaterials from two
different directions, theory and applications. On the theoretical side we seek to define
those effective dynamic homogenized relations which would describe the propagation
characteristics of the mean wave in a composite. It is clear that the Willis constitutive
relations (Equation (15)) are the natural consequence of dynamic averaging and can be
safely taken to apply to the homogenized dynamic behaviour of any elastic composite.
Additionally, the Willis relations are found to be closed under homogenization whereas
the conventional elastodynamic constitutive relations are not. On the application side we
seek to control wave trajectories in certain specific ways and search for materials which
would allow us to exert such control. Inevitably, we find ourselves searching for materials
with unusual properties which can, often, only be achieved in a homogenized sense. This
is the common ground for theory and applications in acoustic/elastic metamaterials
research. Some techniques (coordinate transformations) which have served well for the
control of electromagnetic waves, when applied to acoustic/elastic waves, reinforce the
idea that the Willis relations are a good description of inhomogeneous elastodynamics.
This results from the fact that the Willis relations are closed under coordinate transforma-
tions. However, Willis relations are not unique and this nonuniqueness is mirrored in the
practical manifestation that several different routes exist to achieve the aims of wave
control in applications such as cloaking.
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